Metabolic responses of the squat lobster (Pleuroncodes monodon) larvae to low oxygen concentration
Marine Biology, ISSN: 0025-3162, Vol: 160, Issue: 4, Page: 961-976
2013
- 17Citations
- 46Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Squat lobster populations found in the Humboldt Current System over the continental shelf from ~28 to 37°S release pelagic larvae in sub-surface cold (~11 °C) hypoxic waters. Larvae subsequently spread throughout the water column encountering both normoxic and hypoxic conditions. We analyzed some short- and long-term responses of Pleuroncodes monodon larval metabolism to hypoxia at 11 °C. Routine and postprandial aerobic respiration rates were lower in hypoxia than in normoxia for all zoeal stages. Zoea V oxyconformed, while megalopae oxyregulated down to very low oxygen concentrations. Throughout zoea I development, the rate of nitrogen (protein) accumulation in zoea I was lower, and C:N ratios were higher under hypoxic conditions than in normoxia. Citrate synthase (CS) and malate dehydrogenase (MDH) apparent specific activities (as indicators of aerobic and metabolic potentials, respectively) decreased and remained at the same level, respectively, throughout zoea I reared under hypoxic conditions. Anaerobic to aerobic potential (lactate dehydrogenase (LDH)/CS) was higher in organisms reared under hypoxia, and MDH/LDH potential ratios were characteristic of organisms tolerant to hypoxia. In spite of P. monodon zoea endurance and metabolic adaptations to decreasing oxygen tensions, intense hypoxia as such of their release site would affect their overall condition especially toward the end of the molt cycle. Our results indicate the importance of considering the interaction between environmental oxygen variability and recruitment success. © 2013 Springer-Verlag Berlin Heidelberg.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know