Cover of coastal vegetation as an indicator of eutrophication along environmental gradients
Marine Biology, ISSN: 0025-3162, Vol: 163, Issue: 12, Page: 257
2016
- 10Citations
- 38Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes9
- Policy Citations1
- Policy Citation1
- Captures38
- Readers38
- 38
Article Description
Coastal vegetation communities are important for primary production, biodiversity, coastal protection, carbon and nutrient cycling which, in combination with their sensitivity to eutrophication, render them potential indicators of environmental status for environmental policies like the EU Water and Marine Strategy Framework Directives. We evaluated one potential indicator for coastal vegetation, the cumulative cover at depths where the vegetation is light limited, by investigating its response to eutrophication along gradients in natural conditions. We used a large data set covering the Swedish coastline, spanning broad gradients in nutrient level, water clarity, seabed substrate, physical exposure and climate in addition to a salinity gradient from 0.5 to 30.5. Macroalgal cover increased significantly along gradients of declining nutrient concentration and increasing water clarity when we had accounted for diver effects, spatio-temporal sampling variability, salinity gradients, wave exposure and latitude. The developed empirical model explained 79% of the variation in algal cover across 130 areas. Based on this, we identified macroalgal cover as a promising indicator across the Baltic Sea, Kattegat and Skagerrak. A parallel analysis of soft-substrate macrophytes similarly identified significant increases in cover with decreasing concentrations of total nitrogen and increasing salinity, but the resulting empirical model explained only 52% of the variation in cover, probably due to the spatially more variable nature of soft-substrate vegetation. The identified general responses of vegetation cover to gradients of eutrophication across wide ranges in environmental settings may be useful for monitoring and management of marine vegetation in areas with strong environmental gradients.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84996798697&origin=inward; http://dx.doi.org/10.1007/s00227-016-3032-6; http://www.ncbi.nlm.nih.gov/pubmed/27980348; http://link.springer.com/10.1007/s00227-016-3032-6; https://dx.doi.org/10.1007/s00227-016-3032-6; https://link.springer.com/article/10.1007/s00227-016-3032-6
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know