Cross-ecosystem trophic subsidies to sandy beaches support surf zone fish
Marine Biology, ISSN: 1432-1793, Vol: 171, Issue: 9
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Food webs in ecotones linking adjacent ecosystems may depend on cross-ecosystem subsidies. In surf zones of temperate sandy beaches, higher-level consumers often rely on intertidal prey that utilize allochthonous primary production. We evaluated the importance of phytoplankton and kelp-based prey, as well as physical characteristics of beaches, to diet of a surf zone fish, barred surfperch (Amphistichus argenteus), through stomach content and stable isotope analyses. Our results suggested that barred surfperch rely on prey from both phytoplankton and kelp-based subsidies, but their relative contribution to diet varied widely across beaches. Sand crabs (Emerita analoga), which depend on phytoplankton, were abundant at every beach, but their contribution to diet in stomach contents varied from 2 to 87% among sites. At the majority of beaches, δC values of fish muscle tissue, which reflects diet integrated over time, were within 0.5 ‰ of sand crab values, suggesting a reliance on phytoplankton-based prey. However, kelp-dependent prey associated either with beach wrack or subtidal reefs was also present in surfperch stomachs from all beaches (up to 41–72%). The notable enrichment in C of juvenile surfperch at two beaches and adults at one beach relative to sand crabs suggested a longer-term contribution of kelp-based prey to fish diet. The detection of kelp-based prey in surfperch diets also indicates the potential for reciprocal subsidies in these ecotones. Our results suggest trophic connectivity between surf zones and kelp forests and sandy beaches is spatially variable and that opportunistic higher-level consumers can shift their diet in response to the availability of phytoplankton and kelp-based food resources.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know