Posterior circulation ischemic stroke: radiomics-based machine learning approach to identify onset time from magnetic resonance imaging
Neuroradiology, ISSN: 1432-1920, Vol: 66, Issue: 7, Page: 1141-1152
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Purpose: Posterior circulation ischemic stroke (PCIS) possesses unique features. However, previous studies have primarily or exclusively relied on anterior circulation stroke cases to build machine learning (ML) models for predicting onset time. To date, there is no research reporting the effectiveness and stability of ML in identifying PCIS onset time. We aimed to build diffusion-weighted imaging-based ML models to identify the onset time of PCIS patients. Methods: Consecutive PCIS patients within 24 h of definite symptom onset were included (112 in the training set and 49 in the independent test set). Images were processed as follows: volume of interest segmentation, image feature extraction, and feature selection. Five ML models, naïve Bayes, logistic regression, tree ensemble, k-nearest neighbor, and random forest, were built based on the training set to estimate the stroke onset time (binary classification: ≤ 4.5 h or > 4.5 h). Relative standard deviations (RSD), receiver operating characteristic (ROC) curves, and the calibration plot was performed to evaluate the stability and performance of the five models. Results: The random forest model had the best performance in the test set, with the highest area under the curve (AUC, 0.840; 95% CI: 0.706, 0.974). This model also achieved the highest accuracy, sensitivity, specificity, positive predictive value, and negative predictive value (83.7%, 64.3%, 91.4%, 75.0%, and 86.5%, respectively). Furthermore, the model had high stability (RSD = 0.0094). Conclusion: The PCIS case-based ML model was effective for estimating the symptom onset time and achieved considerably high specificity and stability.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85190281822&origin=inward; http://dx.doi.org/10.1007/s00234-024-03353-8; http://www.ncbi.nlm.nih.gov/pubmed/38592454; https://link.springer.com/10.1007/s00234-024-03353-8; https://dx.doi.org/10.1007/s00234-024-03353-8; https://link.springer.com/article/10.1007/s00234-024-03353-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know