Analysis of a Mathematical Model Arising in Plant Disease Epidemiology
Applied Mathematics and Optimization, ISSN: 1432-0606, Vol: 85, Issue: 2
2022
- 6Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work we study from the mathematical and numerical point of view a problem arising in vector-borne plant diseases. The model is written as a nonlinear system composed of a parabolic partial differential equation for the vector abundance function and a first-order ordinary differential equation for the plant health function. An existence and uniqueness result is proved using backward finite differences, uniform estimates and passing to the limit. The regularity of the solution is also obtained. Then, using the finite element method and the implicit Euler scheme, fully discrete approximations are introduced. A discrete stability property and a main a priori error estimates result are proved using a discrete version of Gronwall’s lemma and some estimates on the different approaches. Finally, some numerical results, in one and two dimensions, are presented to demonstrate the accuracy of the approximation and the behaviour of the solution.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know