Distinct Communities of Poplar Endophytes on an Unpolluted and a Risk Element-Polluted Site and Their Plant Growth-Promoting Potential In Vitro
Microbial Ecology, ISSN: 0095-3628, Vol: 75, Issue: 4, Page: 955-969
2018
- 18Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef2
- Captures22
- Readers22
- 22
Article Description
Numerous studies demonstrated that endophytic microbes can promote plant growth and increase plant stress resistance. We aimed at isolating poplar endophytes able to increase their hosts’ fitness both in nutrient-limited and polluted environments. To achieve this goal, endophytic bacteria and fungi were isolated from roots and leaves of hybrid poplars (Populus nigra × P. maximowiczii clone Max-4) on an unpolluted and a risk element-polluted site in the Czech Republic and subsequently screened by a number of in vitro tests. Bacterial communities at the unpolluted site were dominated by Gammaproteobacteria with Pseudomonas sp. as the prominent member of the class, followed by Bacilli with prevailing Bacillus sp., whereas Alphaproteobacteria, mostly Rhizobium sp., prevailed at the polluted site. The fungal endophytic community was dominated by Ascomycetes and highly distinct on both sites. Dothideomycetes, mostly Cladosporium, prevailed at the non-polluted site while unclassified Sordariomycetous fungi dominated at the polluted site. Species diversity of endophytes was higher at the unpolluted site. Many tested endophytic strains solubilized phosphate and produced siderophores, phytohormones, and antioxidants. Some strains also exhibited ACC-deaminase activity. Selected bacteria showed high tolerance and the ability to accumulate risk elements, making them promising candidates for use in inocula promoting biomass production and phytoremediation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85033442534&origin=inward; http://dx.doi.org/10.1007/s00248-017-1103-y; http://www.ncbi.nlm.nih.gov/pubmed/29127500; http://link.springer.com/10.1007/s00248-017-1103-y; https://dx.doi.org/10.1007/s00248-017-1103-y; https://link.springer.com/article/10.1007/s00248-017-1103-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know