Microbial community composition and dynamics in high-temperature biogas reactors using industrial bioethanol waste as substrate
Applied Microbiology and Biotechnology, ISSN: 1432-0614, Vol: 98, Issue: 21, Page: 9095-9106
2014
- 31Citations
- 63Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations31
- Citation Indexes31
- 31
- CrossRef22
- Captures63
- Readers63
- 63
Article Description
Stillage, which is generated during bioethanol production, constitutes a promising substrate for biogas production within the scope of an integrated biorefinery concept. In this study, a microbial community was grown on thin stillage as mono-substrate in a continuous stirred tank reactor (CSTR) at a constant temperature of 55 °C, at an organic loading rate of 1.5 g/L*d and a retention time of 25 days. Using an amplicon-based dataset of 17,400 high-quality sequences of 16S rRNA gene fragments (V2–V3 regions), predominance of Bacteria assigned to the families Thermotogaceae and Elusimicrobiaceae was detected. Dominant members of methane-producing Euryarchaeota within the CSTR belonged to obligate acetoclastic Methanosaetaceae and hydrogenotrophic Methanobacteriaceae. In order to investigate population dynamics during reactor acidification, the organic loading rate was increased abruptly, which resulted in an elevated concentration of volatile fatty acids. Acidification led to a decrease in relative abundance of Bacteria accompanied with stable numbers of Archaea. Nevertheless, the abundance of Methanosaetaceae increased while that of Methanobacteriales decreased successively. These findings demonstrate that a profound intervention to the biogas process may result in persistent community changes and reveals uncommon bacterial families as process-relevant microorganisms.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84920253614&origin=inward; http://dx.doi.org/10.1007/s00253-014-5906-1; http://www.ncbi.nlm.nih.gov/pubmed/25012784; http://link.springer.com/10.1007/s00253-014-5906-1; https://dx.doi.org/10.1007/s00253-014-5906-1; https://link.springer.com/article/10.1007/s00253-014-5906-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know