Engineering Escherichia coli for a high yield of 1,3-propanediol near the theoretical maximum through chromosomal integration and gene deletion
Applied Microbiology and Biotechnology, ISSN: 1432-0614, Vol: 106, Issue: 8, Page: 2937-2951
2022
- 11Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef6
- Captures14
- Readers14
- 14
Article Description
Abstract: Glycerol dehydratase (gdrAB-dhaB123) operon from Klebsiella pneumoniae and NADPH-dependent 1,3-propanediol oxidoreductase (yqhD) from Escherichia coli were stably integrated on the chromosomal DNA of E. coli under the control of the native-host ldhA and pflB constitutive promoters, respectively. The developed E. coli NSK015 (∆ldhA::gdrAB-dhaB123 ∆ackA::FRT ∆pflB::yqhD ∆frdABCD::cat-sacB) produced 1,3-propanediol (1,3-PDO) at the level of 36.8 g/L with a yield of 0.99 mol/mol of glycerol consumed when glucose was used as a co-substrate with glycerol. Co-substrate of glycerol and cassava starch was also utilized for 1,3-PDO production with the concentration and yield of 31.9 g/L and 0.84 mol/mol of glycerol respectively. This represents a work for efficient 1,3-PDO production in which the overexpression of heterologous genes on the E. coli host genome devoid of plasmid expression systems. Plasmids, antibiotics, IPTG, and rich nutrients were omitted during 1,3-PDO production. This may allow a further application of E. coli NSK015 for the efficient 1,3-PDO production in an economically industrial scale. Key points: • gdrAB-dhaB123 and yqhD were overexpressed in E. coli devoid of a plasmid system • E. coli NSK015 produced a high yield of 1,3-PDO at 99% theoretical maximum • Cassava starch was alternatively used as substrate for economical 1,3-PDO production
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128059742&origin=inward; http://dx.doi.org/10.1007/s00253-022-11898-y; http://www.ncbi.nlm.nih.gov/pubmed/35416488; https://link.springer.com/10.1007/s00253-022-11898-y; https://dx.doi.org/10.1007/s00253-022-11898-y; https://link.springer.com/article/10.1007/s00253-022-11898-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know