Production of cello-oligosaccharides from corncob residue by degradation-synthesis reactions
Applied Microbiology and Biotechnology, ISSN: 1432-0614, Vol: 108, Issue: 1, Page: 1-11
2024
- 1Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: The cellulose-rich corncob residue (CCR) is an abundant and renewable agricultural biomass that has been under-exploited. In this study, two strategies were compared for their ability to transform CCR into cello-oligosaccharides (COS). The first strategy employed the use of endo-glucanases. Although selected endo-glucanases from GH9, GH12, GH45, and GH131 could release COS with degrees of polymerization from 2 to 4, the degrading efficiency was low. For the second strategy, first, CCR was efficiently depolymerized to glucose and cellobiose using the cellulase from Trichoderma reesei. Then, using these simple sugars and sucrose as the starting materials, phosphorylases from different microorganisms were combined to generate COS to a level up to 100.3 g/L with different patterns and degrees of polymerization. Using tomato as a model plant, the representative COS obtained from BaSP (a sucrose phosphorylase from Bifidobacterium adolescens), CuCbP (a cellobiose phosphorylase from Cellulomonas uda), and CcCdP (a cellodextrin phosphorylase from Clostridium cellulosi) were shown to be able to promote plant growth. The current study pointed to an approach to make use of CCR for production of the value-added COS. Key points: • Sequential use of cellulase and phosphorylases effectively generated cello-oligosaccharides from corncob residue. • Cello-oligosaccharides patterns varied in accordance to cellobiose/cellodextrin phosphorylases. • Spraying cello-oligosaccharides promoted tomato growth. Graphical Abstract: [Figure not available: see fulltext.]
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85181228922&origin=inward; http://dx.doi.org/10.1007/s00253-023-12832-6; http://www.ncbi.nlm.nih.gov/pubmed/38170309; https://link.springer.com/10.1007/s00253-023-12832-6; https://dx.doi.org/10.1007/s00253-023-12832-6; https://link.springer.com/article/10.1007/s00253-023-12832-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know