Managing hardware-related metal artifacts in MRI: current and evolving techniques
Skeletal Radiology, ISSN: 1432-2161, Vol: 53, Issue: 9, Page: 1737-1750
2024
- 7Citations
- 137Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Magnetic resonance imaging (MRI) around metal implants has been challenging due to magnetic susceptibility differences between metal implants and adjacent tissues, resulting in image signal loss, geometric distortion, and loss of fat suppression. These artifacts can compromise the diagnostic accuracy and the evaluation of surrounding anatomical structures. As the prevalence of total joint replacements continues to increase in our aging society, there is a need for proper radiological assessment of tissues around metal implants to aid clinical decision-making in the management of post-operative complaints and complications. Various techniques for reducing metal artifacts in musculoskeletal imaging have been explored in recent years. One approach focuses on improving hardware components. High-density multi-channel radiofrequency (RF) coils, parallel imaging techniques, and gradient warping correction enable signal enhancement, image acquisition acceleration, and geometric distortion minimization. In addition, the use of susceptibility-matched implants and low-field MRI helps to reduce magnetic susceptibility differences. The second approach focuses on metal artifact reduction sequences such as view-angle tilting (VAT) and slice-encoding for metal artifact correction (SEMAC). Iterative reconstruction algorithms, deep learning approaches, and post-processing techniques are used to estimate and correct artifact-related errors in reconstructed images. This article reviews recent developments in clinically applicable metal artifact reduction techniques as well as advances in MR hardware. The review provides a better understanding of the basic principles and techniques, as well as an awareness of their limitations, allowing for a more reasoned application of these methods in clinical settings.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85185521164&origin=inward; http://dx.doi.org/10.1007/s00256-024-04624-4; http://www.ncbi.nlm.nih.gov/pubmed/38381196; https://link.springer.com/10.1007/s00256-024-04624-4; https://dx.doi.org/10.1007/s00256-024-04624-4; https://link.springer.com/article/10.1007/s00256-024-04624-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know