Evaluation of crop water stress index and leaf water potential for differentially irrigated quinoa with surface and subsurface drip systems
Irrigation Science, ISSN: 1432-1319, Vol: 39, Issue: 1, Page: 81-100
2021
- 28Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A 2-year field experiment was conducted with the objectives to evaluate the physiological and yield response of quinoa cv Titicaca to various deficit irrigation strategies applied with surface drip (SD) and subsurface drip systems (SSD) under the Mediterranean climatic conditions in 2016 and 2017. The treatments consisted of regulated deficit irrigation (RDI), partial root-zone drying (PRD), conventional deficit irrigations (DI, DI) and full irrigation (FI) under SD and SSD. A rainfed treatment was also included. The experimental design was split plots with four replications. DI and DI received 75 and 50% of FI, respectively. PRD plots received 50% of FI, but from alternative laterals in each application. RDI received 50% of FI during vegetative stage until flowering, then received 100% of water requirement. The results indicated that RDI resulted in water saving of 23 and 21% for surface drip (SD) and SSD systems, respectively, and RDI produced statistically similar yield to FI treatment in both experimental years. DI treatment resulted in water savings of 16% for both drip methods in the first year and 10 and 25% for SD and SSD systems, respectively, in the second year. Thus, RDI and DI treatments appear to be good alternative to FI for sustainable quinoa production in the Mediterranean environmental conditions. Greater leaf water potential (LWP) and smaller crop water stress index (CWSI) values were measured in FI plots under both drip systems than deficit irrigation treatment plots. Significant second-order polynomial relations were determined between CWSI and LWP for the drip systems. Leaf area index (LAI), LWP decreased and CWSI increased as the drought increased. CWSI correlated significantly (P < 0.01) and negatively with grain yield, dry matter yield, LAI, and mean soil water content indicating that grain yield of quinoa declined with increasing CWSI values. All these relations are best described by significant second-order polynomial equations. The results revealed that quinoa should be irrigated at LWP values between − 1.35 and − 1.60 MPa, and average CWSI value of approximately 0.35 for high yields.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85089158596&origin=inward; http://dx.doi.org/10.1007/s00271-020-00681-4; https://link.springer.com/10.1007/s00271-020-00681-4; https://link.springer.com/content/pdf/10.1007/s00271-020-00681-4.pdf; https://link.springer.com/article/10.1007/s00271-020-00681-4/fulltext.html; https://dx.doi.org/10.1007/s00271-020-00681-4; https://link.springer.com/article/10.1007/s00271-020-00681-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know