Filtering coupled Wright–Fisher diffusions
Journal of Mathematical Biology, ISSN: 1432-1416, Vol: 89, Issue: 6, Page: 64
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Coupled Wright–Fisher diffusions have been recently introduced to model the temporal evolution of finitely-many allele frequencies at several loci. These are vectors of multidimensional diffusions whose dynamics are weakly coupled among loci through interaction coefficients, which make the reproductive rates for each allele depend on its frequencies at several loci. Here we consider the problem of filtering a coupled Wright–Fisher diffusion with parent-independent mutation, when this is seen as an unobserved signal in a hidden Markov model. We assume individuals are sampled multinomially at discrete times from the underlying population, whose type configuration at the loci is described by the diffusion states, and adapt recently introduced duality methods to derive the filtering and smoothing distributions. These respectively provide the conditional distribution of the diffusion states given past data, and that conditional on the entire dataset, and are key to be able to perform parameter inference on models of this type. We show that for this model these distributions are countable mixtures of tilted products of Dirichlet kernels, and describe their mixing weights and how these can be updated sequentially. The evaluation of the weights involves the transition probabilities of the dual process, which are not available in closed form. We lay out pseudo codes for the implementation of the algorithms, discuss how to handle the unavailable quantities, and briefly illustrate the procedure with synthetic data.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85209230109&origin=inward; http://dx.doi.org/10.1007/s00285-024-02156-y; http://www.ncbi.nlm.nih.gov/pubmed/39538035; https://link.springer.com/10.1007/s00285-024-02156-y; https://dx.doi.org/10.1007/s00285-024-02156-y; https://link.springer.com/article/10.1007/s00285-024-02156-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know