Mechanical properties of green canola meal composites and reinforcement with cellulose fibers
Polymer Bulletin, ISSN: 0170-0839, Vol: 76, Issue: 3, Page: 1257-1275
2019
- 11Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Samples of canola meal (CM), a by-product of canola oil extraction, with different particle sizes and canola protein (CP) content were obtained by ball milling followed by air classification. In an effort to produce highly deformable “green” biodegradable materials, these CM samples were used to prepare CM bioplastics and their mechanical properties were characterized and compared. It was found that greater CP content led to an increase in elongation at break and a decrease in tensile strength; however, particle size of CM had no apparent impact on the tensile properties. Considering its high mechanical properties and miscibility with the CM matrix, cellulose fiber (CF) was added to the composite formulation to fabricate samples with enhanced tensile strength. The effects of fiber loading on mechanical and thermal properties were characterized using tensile testing and dynamic mechanical analysis. Marked improvements in tensile strength and modulus were found with increasing fiber content above 5 wt%, while mechanical properties were constant between fiber contents of 1–5 wt% because of the inefficient packing of the CF, indicating that the fiber content of 5 wt% is a percolation threshold to increase the mechanical property of the CM composite. The DMA results illustrate that the addition of fiber produced an increase in storage modulus and decreased damping factors for the composites with > 5 wt% CF, reflecting strong interfacial adhesion between CM and CF which resulted in a decrease in chain mobility.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know