Tailoring of mechanical properties and printability of coated recycled papers
Polymer Bulletin, ISSN: 0170-0839, Vol: 76, Issue: 6, Page: 2965-2990
2019
- 12Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Coated papers have an excessive impact on the appearance and utility of printed materials with respect to the increase in mechanical strength, print gloss and print density. Styrene–butyl acrylate copolymers were synthesized utilizing different emulsifier systems and modified with acrylamide. These lattices were evaluated as paper coats in the presence of kaolin, calcium carbonate and a mixture of both as pigments. The evaluation aimed at employing these lattices on recycled white and brown paper substrates with respect to their mechanical properties and their printability. The tensile strength of coated papers was upgraded by ~ 20–30% in CD compared with that of uncoated papers. The improvement ratio was ~ 12–16% in bursting strength compared with that of the uncoated paper. The maximum gloss values (39 and 48) and the maximum print density values (2.51 and 2.44) were obtained for ground calcium carbonate “GCC” composites on white and brown bases, respectively. Formulas containing GCC had a uniform printed surface with high-quality ink distribution without any picking up of coated surface. This work is a promising one as efficient synthesized binders and a local pigment were employed besides achieving offset printing on recycled brown papers for the first time.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know