cAMP-PKA signal transduction specificity in Saccharomyces cerevisiae
Current Genetics, ISSN: 1432-0983, Vol: 66, Issue: 6, Page: 1093-1099
2020
- 16Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef2
- Captures43
- Readers43
- 43
Review Description
Living cells have developed a set of complex signaling responses, which allow them to withstand different environmental challenges. Signaling pathways enable the cell to monitor external and internal states and to articulate the appropriate physiological responses. Cellular signal transmission requires the dynamic formation of spatiotemporal controlled molecular interactions. One of the most important signaling circuits in Saccharomyces cerevisiae is the one controlled by cAMP-Protein Kinase A (PKA). In budding yeast, extracellular glucose and a plethora of signals related with growth and stress conditions regulate the intracellular cAMP levels that modulate PKA activity which in turn regulates a broad range of cellular processes. The cAMP-PKA signaling output requires a controlled specificity of the PKA responses. In this review we discuss the molecular mechanisms that are involved in the establishment of the specificity in the cAMP-PKA signaling pathway in S.cerevisiae.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85091008318&origin=inward; http://dx.doi.org/10.1007/s00294-020-01107-6; http://www.ncbi.nlm.nih.gov/pubmed/32935175; https://link.springer.com/10.1007/s00294-020-01107-6; https://dx.doi.org/10.1007/s00294-020-01107-6; https://link.springer.com/article/10.1007/s00294-020-01107-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know