Do plaque-related factors affect the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system? Comparison with invasive coronary angiography
European Radiology, ISSN: 1432-1084, Vol: 32, Issue: 3, Page: 1866-1878
2022
- 4Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures20
- Readers20
- 20
Article Description
Objective: The aim of this study was to investigate the effects of plaque-related factors on the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system (AI-CADS). Methods: Patients who underwent coronary computed tomography angiography (CCTA) and invasive coronary angiography (ICA) were retrospectively included in this study. The degree of stenosis in each vessel was collected from CCTA and ICA, and the information on plaque-related factors (plaque length, plaque type, and coronary artery calcium score (CAC)) of the vessels with plaques was collected from CCTA. Results: In total, 1224 vessels in 306 patients (166 men; 65.7 ± 10.1 years) were analyzed. Of these, 391 vessels in 249 patients showed significant stenosis using ICA as the gold standard. Using per-vessel as the unit, the area under the curves of coronary stenosis ≥ 50% for AI-CADS, doctor, and AI-CADS + doctor was 0.764, 0.837, and 0.853, respectively. The accuracies in interpreting the degree of coronary stenosis were 56.0%, 68.1%, and 71.2%, respectively. Seven hundred fifty vessels showed plaques on CCTA; plaque type did not affect the interpretation results by AI-CADS (chi-square test: p = 0.0093; multiple logistic regression: p = 0.4937). However, the interpretation results for plaque length (chi-square test: p < 0.0001; multiple logistic regression: p = 0.0061) and CACs (chi-square test: p < 0.0001; multiple logistic regression: p = 0.0001) were significantly different. Conclusion: AI-CADS has an ability to distinguish ≥ 50% coronary stenosis, but additional manual interpretation based on AI-CADS is necessary. The plaque length and CACs will affect the diagnostic performance of AI-CADS. Key Points: • AI-CADS can help radiologists quickly assess CCTA and improve diagnostic confidence. • Additional manual interpretation on the basis of AI-CADS is necessary. • The plaque length and CACs will affect the diagnostic performance of AI-CADS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85115733111&origin=inward; http://dx.doi.org/10.1007/s00330-021-08299-6; http://www.ncbi.nlm.nih.gov/pubmed/34564743; https://link.springer.com/10.1007/s00330-021-08299-6; https://dx.doi.org/10.1007/s00330-021-08299-6; https://link.springer.com/article/10.1007/s00330-021-08299-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know