Prediction of Ki-67 expression in gastrointestinal stromal tumors using radiomics of plain and multiphase contrast-enhanced CT
European Radiology, ISSN: 1432-1084, Vol: 33, Issue: 11, Page: 7609-7617
2023
- 13Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- Captures7
- Readers7
Article Description
Objective: To study the value of radiomics models based on plain and multiphase contrast-enhanced CT to predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Methods: A total of 215 patients with GISTs were retrospectively analyzed, including 150 patients in one hospital as the training set and 65 patients in another hospital as the external verification set. The tumor at the largest level of CT images was delineated as the region of interest (ROI). The maximum diameter of the ROI was defined as the tumor size. A total of 851 radiomics features were extracted from each ROI by 3D Slicer Radiomics. After dimensionality reduction, three machine learning classification algorithms including logistic regression (LR), random forest (RF), and support vector machine (SVM) were used for Ki-67 expression prediction. Using a multivariable logistic model, a nomogram was established to predict the expression of Ki-67 individually. Results: Delong tests showed that the SVM models had the highest accuracy in the arterial phase (Z value 0.217–1.139) and venous phase (Z value 0.022–1.396). For the plain phase, LR and SVM models had the highest accuracy (Z value 0.874–1.824, 1.139–1.763). For the delayed phase, LR models had the highest accuracy (Z value 0.056–1.824). For the combined phase, RF models had the highest accuracy (Z value 0.232–1.978). There was no significant difference among the above models for KI-67 expression prediction (Z value 0.022–1.978). A nomogram was developed with a C-index of 0.913 (95% CI, 0.878 to 0.956). Conclusions: Radiomics of both plain and enhanced CT images could accurately predict the expression of Ki-67 in GIST. For patients who were not suitable to use contrast agents, plain scan could be used as an alternative. Clinical relevance statement: CT radiomics could accurately predict the expression of Ki-67 in GIST, which has a great clinical value in reflecting the proliferative activity of tumor cells and helping determine whether a patient is suitable for adjuvant therapy with imatinib. Key Points: • Radiomics of both plain and enhanced CT images could accurately predict the expression of Ki-67 in GIST. • For patients who were not suitable to use contrast agents, plain scan could be used as an alternative. • A radiomics nomogram was developed to allow personalized preoperative evaluation with high accuracy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85160818557&origin=inward; http://dx.doi.org/10.1007/s00330-023-09727-5; http://www.ncbi.nlm.nih.gov/pubmed/37266658; https://link.springer.com/10.1007/s00330-023-09727-5; https://dx.doi.org/10.1007/s00330-023-09727-5; https://link.springer.com/article/10.1007/s00330-023-09727-5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know