Extreme Statistics of Superdiffusive Lévy Flights and Every Other Lévy Subordinate Brownian Motion
Journal of Nonlinear Science, ISSN: 1432-1467, Vol: 33, Issue: 4
2023
- 6Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The search for hidden targets is a fundamental problem in many areas of science, engineering, and other fields. Studies of search processes often adopt a probabilistic framework, in which a searcher randomly explores a spatial domain for a randomly located target. There has been significant interest and controversy regarding optimal search strategies, especially for superdiffusive processes. The optimal search strategy is typically defined as the strategy that minimizes the time it takes a given single searcher to find a target, which is called a first hitting time (FHT). However, many systems involve multiple searchers, and the important timescale is the time it takes the fastest searcher to find a target, which is called an extreme FHT. In this paper, we study extreme FHTs for any stochastic process that is a random time change of Brownian motion by a Lévy subordinator. This class of stochastic processes includes superdiffusive Lévy flights in any space dimension, which are processes described by a Fokker–Planck equation with a fractional Laplacian. We find the short-time distribution of a single FHT for any Lévy subordinate Brownian motion and use this to find the full distribution and moments of extreme FHTs as the number of searchers grows. We illustrate these rigorous results in several examples and numerical simulations.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know