Ontogenetic habitat shifts in fusiliers (Lutjanidae): evidence from Caesio cuning at Lizard Island, Great Barrier Reef
Coral Reefs, ISSN: 1432-0975, Vol: 40, Issue: 6, Page: 1687-1696
2021
- 8Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Planktivorous reef-associated fishes provide a significant nutrient input to the reef, linking pelagic and reef environments. Highly mobile and relatively large body-sized fusiliers (Lutjanidae) often dominate reef fish biomass, but their role in ecosystem processes is poorly understood. We therefore combined fish counts and behavioural observations at Lizard Island, Great Barrier Reef, to investigate: (1) the spatial distribution and biology of fusiliers on a lagoonal coral reef system, and (2) how does fusilier behaviour and size distribution change from exposed to sheltered locations. We found higher abundances of large-sized fusiliers (≥ 20 cm total length) on exposed reef sites. Sheltered sites had almost exclusively small individuals (< 20 cm total length). We interpret this pattern as indicative of an ontogenetic habitat shift. This shift was estimated to occur at about 11.15 cm total length; the size at which the likelihood of an individual being in exposed or sheltered locations was equal. The age corresponding to this length was 1.01 years, based on a von Bertalanffy growth model using size-at-age data from otolith rings of Caesio cuning, the most abundant fusilier species in this location. This suggested that the shift in distribution occurred prior to the onset of sexual maturity. This apparent ontogenetic shift to more exposed habitats with increasing size, especially in C. cuning, was also associated with a distinct behavioural profile: larger fish at the exposed sites travelled further off reef, occupied deeper habitats, and formed larger schools compared to smaller individuals. This study provides the first evidence of seascape-scale ontogenetic habitat shifts in a planktivorous reef fish, providing a foundation for future detailed analyses of the ecological roles of fusiliers.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know