Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations
Applied Physics A: Materials Science and Processing, ISSN: 0947-8396, Vol: 114, Issue: 1, Page: 11-32
2014
- 304Citations
- 230Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The microscopic mechanisms of femtosecond laser ablation of an Al target are investigated in large-scale massively parallel atomistic simulations performed with a computational model combining classical molecular dynamics technique with a continuum description of the laser excitation and subsequent relaxation of conduction band electrons. The relatively large lateral size of the computational systems used in the simulations enables a detailed analysis of the evolution of multiple voids generated in a sub-surface region of the irradiated target in the spallation regime, when the material ejection is driven by the relaxation of laser-induced stresses. The nucleation, growth, and coalescence of voids take place within a broad (∼ 100 nm) region of the target, leading to the formation of a transient foamy structure of interconnected liquid regions and eventual separation (or spallation) of a thin liquid layer from the bulk of the target. The thickness of the spalled layer is decreasing from the maximum of ∼ 50 nm while the temperature and ejection velocity are increasing with increasing fluence. At a fluence of ∼ 2.5 times the spallation threshold, the top part of the target reaches the conditions for an explosive decomposition into vapor and small clusters/droplets, marking the transition to the phase explosion regime of laser ablation. This transition is signified by a change in the composition of the ablation plume from large liquid droplets to a mixture of vapor-phase atoms and clusters/droplets of different sizes. The clusters of different sizes are spatially segregated in the expanding ablation plume, where small/medium size clusters present in the middle of the plume are followed by slower (velocities of less than 3 km/s) large droplets consisting of more than 10,000 atoms. The similarity of some of the characteristics of laser ablation of Al targets (e.g., evolution of voids in the spallation regime and cluster size distributions in the phase explosion regime) to the ones observed in earlier simulations performed for different target materials points to the common mechanical and thermodynamic origins of the underlying processes. © 2013 Springer-Verlag Berlin Heidelberg.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84893714234&origin=inward; http://dx.doi.org/10.1007/s00339-013-8086-4; http://link.springer.com/10.1007/s00339-013-8086-4; http://link.springer.com/content/pdf/10.1007/s00339-013-8086-4; http://link.springer.com/content/pdf/10.1007/s00339-013-8086-4.pdf; http://link.springer.com/article/10.1007/s00339-013-8086-4/fulltext.html; https://dx.doi.org/10.1007/s00339-013-8086-4; https://link.springer.com/article/10.1007/s00339-013-8086-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know