PlumX Metrics
Embed PlumX Metrics

Application of fundamental parameter approach using integrated backscattering intensity for X-ray fluorescence analysis

Applied Physics A: Materials Science and Processing, ISSN: 1432-0630, Vol: 126, Issue: 5
2020
  • 1
    Citations
  • 0
    Usage
  • 6
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The fundamental parameter (FP) approach, in which the both intensities of coherently (Rayleigh) and incoherently (Compton) scattered primary radiation are added individually to estimate the ‘dark matrix’ of the analyzed specimen, is considered successful, especially for in situ element determination. However, the current energy resolution of the energy-dispersive X-ray fluorescence (EDXRF) spectrometer system is not yet high enough for two scattered peaks to appear without overlapping in general, and separating two peaks with each other yields reduced accuracy of analysis. The FP approach with only the integrated backscattering intensity added in place of both of the individual backscatter intensities is proposed for X-ray fluorescence (XRF) analysis of unknown specimen. The present results show that the weight fraction deviations are below 5%, which is much lower than the maximum error 10.79% of the results for four selected samples by using the previous BFP. Our determination of elements reveals Na, Mg, Al, and Si as hypothetical elements representing compositions SiO and AlO, namely the main compositions of the gangue for the geological samples as a mineral ore.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know