Structural, dielectric, thermal and electrical characteristics of lead-free double perovskite: BiHoZnCeO
Applied Physics A: Materials Science and Processing, ISSN: 1432-0630, Vol: 126, Issue: 8
2020
- 17Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
BiHoZnCeO, the double pervoskite was synthesized using a cost-effective solid-state reaction method. The structural evaluation of the double pervoskite, when carried out by using the X-ray diffraction pattern suggested an orthorhombic crystal geometry with non- centrosymmetry space group Pca2. The microstructural investigation on the above material is carried out with the help of a scanning electron micrograph. These SEM micrographs showed that the grains of varying sizes (0.5–2 μm) are uniformly distributed. The study of dielectric characteristics as a function of temperature and frequency revealed some interesting characteristics of the material. One such observation is the identification of ferroelectric transition temperature at 435 °C. The strong anomaly at 435 °C and the ferroelectric behavior of the material is further validated by the study of spontaneous polarization (the hysteresis loop). In the present communication, the detailed microstructural, dielectric (dielectric constant, tangent loss, and electric polarization), thermal and electrical (impedance, electrical modulus, conductivity) studies on bismuth holmium zinc ceranate is presented along with the existence of ferroelectricity.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know