Investigation of the temperature-dependent functioning of BiFeO3 as a ferroelectric material through X-ray diffraction analysis
Applied Physics A: Materials Science and Processing, ISSN: 1432-0630, Vol: 131, Issue: 1
2025
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
In recent years, Bismuth Ferrite (BiFeO, BFO) has emerged as a promising multiferroic material due to its high antiferromagnetic Néel temperature (T ~ 623–643 K) and ferroelectric Curie temperature (T ~ 1083–1103 K). These properties make BFO a strong candidate for exhibiting a magnetoelectric effect even at room temperature. Understanding the temperature-dependent ferroelectric behavior of BFO is crucial for optimizing its performance in applications where stable ferroelectric behavior at operational temperatures is essential for enhancing device efficiency, stability, and functionality. This study investigates the impact of temperature on the crystallographic characteristics (unit cell type, bond lengths, and dimensions) and ferroelectric performance of BFO. X-ray diffraction and electrical hysteresis measurements confirm the presence of a ferroelectric phase with a rhombohedral R3c structure, along with two phase transitions: the first around 600 K from ferroelectric to paraelectric, and the second near 1050 K from paraelectric back to ferroelectric.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know