Development of organelle single nucleotide polymorphism (SNP) markers and their application for the identification of cytoplasmic inheritance patterns in Pyropia yezoensis (Bangiales, Rhodophyta)
Journal of Oceanology and Limnology, ISSN: 2523-3521, Vol: 39, Issue: 4, Page: 1447-1457
2021
- 3Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The genus Pyropia contains several important cultivated species. Genetic research in nori species has mainly focused on the cell nucleus, with few studies on organelles (chloroplast and mitochondria). Due to the high copy numbers of organelles in cells, which influence the development and traits of algae, it is necessary to study their genetic mechanism. In this study, the marine red alga Pyropia yezoensis, an important economic macroalga, was selected as the study object. To investigate organelle (chloroplast and mitochondria) inheritance in P. yezoensis, the wild type RZ (maternal strain) was crossed with the red mutant HT (paternal strain) and 30 color-sectors from 11 F1 gametophytic blades were examined. The complete chloroplast and mitochondrial genomes of the red mutant (HT) were assembled for the first time. One reliable and stable single nucleotide polymorphism (SNP) loci filtrated by bioinformatics analysis was used as a molecular marker for chloroplast and mitochondrial DNA, respectively, in subsequent experiments. PCR amplification and sequence analysis showed that the haplotypes of color-sectors detected were consistent with those of the maternal parent, confirming that both chloroplast and mitochondrial genomes were inherited maternally in P. yezoensis. The inheritance pattern of organelles in P. yezoensis can be used to guide the hybridization and breeding of nori. Additionally, the organelle SNP markers developed in this study can be applied in subsequent genetic research.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know