Volumetric PIV measurement for capturing the port flow characteristics within annular gas turbine combustors
Experiments in Fluids, ISSN: 1432-1114, Vol: 61, Issue: 4
2020
- 6Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: The three-dimensional flows within a full featured, unmodified annular gas turbine combustor have been investigated using a scanned stereoscopic PIV measurement technique. Volumetric measurements have been achieved by rigidly translating a stereoscopic PIV system to scan measurements around the combustor, permitting reconstruction of volumetric single-point statistics. Delivering the measurements in this way allows the measurement of larger volumes than are accessible using techniques relying upon high depth of field imaging. The shallow depth of field achieved in the stereoscopic configuration furthermore permits measurements in close proximity to highly detailed geometry. The measurements performed have then been used to assess the performance of the combustor port flows, which are central to the emissions performance and temperature/velocity profile at turbine inlet. Substantially differing performance was observed in the primary ports with circumferential position, which was found to influence the behaviour of the second secondary port jets. The measurements indicated that the interaction between the primary and secondary jets occurred due to variations in the external boundary conditions imposed by the annular passages in which the combustor is located. Graphic abstract: [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know