Bumblebees are able to perceive amino acids via chemotactile antennal stimulation
Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, ISSN: 1432-1351, Vol: 205, Issue: 3, Page: 321-331
2019
- 38Citations
- 55Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations38
- Citation Indexes38
- 38
- CrossRef4
- Captures55
- Readers55
- 55
Article Description
Like all animals, bees need to consume essential amino acids to maintain their body’s protein synthesis. Perception and discrimination of amino acids are, however, still poorly understood in bees (and insects in general). We used chemotactile conditioning of the proboscis extension response (PER) to examine (1) whether Bombus terrestris workers are able to perceive amino acids by means of their antennae and (if so) which ones, (2) whether they are able to differentiate between different amino acids, and (3) whether they are able to differentiate between different concentrations of the same amino acid. We found that workers perceived asparagine, cysteine, hydroxyproline, glutamic acid, lysine, phenylalanine, and serine, but not alanine, leucine, proline, or valine by means of their antennae. Surprisingly, they were unable to differentiate between different (perceivable) amino acids, but they distinguished between different concentrations of lysine. Consequently, bumblebees seem to possess amino acid receptors at the tip of their antennae, which enable a general perception of those solute amino acids that have an additional functional group (besides the common amino and carboxylic groups). They may thus have the ability to assess the overall amino acid content of pollen and nectar prior to ingestion.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85062985084&origin=inward; http://dx.doi.org/10.1007/s00359-019-01321-9; http://www.ncbi.nlm.nih.gov/pubmed/30868227; http://link.springer.com/10.1007/s00359-019-01321-9; https://dx.doi.org/10.1007/s00359-019-01321-9; https://link.springer.com/article/10.1007/s00359-019-01321-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know