A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species
Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, ISSN: 0174-1578, Vol: 192, Issue: 6, Page: 737-750
2022
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures7
- Readers7
Article Description
Notothenioidei fishes have evolved under stable cold temperatures; however, ocean conditions are changing globally, with polar regions poised to experience the greatest changes in environmental factors, such as warming. These stressors have the potential to dramatically affect energetic demands, and the persistence of the notothenioids will be dependent on metabolic capacity, or the ability to match energy supply with energy demand, to restore homeostasis in the face of changing climate conditions. In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. Respiratory capacity differed among the adult notothenioids in this study, with greater oxidative phosphorylation (OXPHOS) respiration in the pelagic T. newnesi than the benthic T. bernacchii and T. pennellii. The variation in mitochondrial respiratory capacity was likely driven by differences in the mitochondrial content, as measured by citrate synthase activity, which was the highest in T. newnesi. In addition to high OXPHOS, T. newnesi exhibited lower LEAK respiration, resulting in greater mitochondrial efficiency than either T. bernacchii or T. pennellii. Life stage largely had an effect on mitochondrial efficiency and excess complex IV capacity, but there were little differences in OXPHOS respiration and electron transfer capacity, pointing to a lack of significant differences in the metabolic capacity between juveniles and adults. Overall, these results demonstrate species-specific differences in cardiac metabolic capacity, which may influence the acclimation potential of notothenioid fishes to changing environmental conditions.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138305248&origin=inward; http://dx.doi.org/10.1007/s00360-022-01461-6; http://www.ncbi.nlm.nih.gov/pubmed/36104549; https://link.springer.com/10.1007/s00360-022-01461-6; https://dx.doi.org/10.1007/s00360-022-01461-6; https://link.springer.com/article/10.1007/s00360-022-01461-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know