PlumX Metrics
Embed PlumX Metrics

Plasticity changes in iron homeostasis in hibernating Daurian ground squirrels (Spermophilus dauricus) may counteract chronically inactive skeletal muscle atrophy

Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, ISSN: 0174-1578, Vol: 194, Issue: 2, Page: 191-202
2024
  • 1
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    1

Article Description

Disuse-induced muscular atrophy is frequently accompanied by iron overload. Hibernating animals are a natural animal model for resistance to disuse muscle atrophy. In this paper, we explored changes in skeletal muscle iron content of Daurian ground squirrels (Spermophilus dauricus) during different periods of hibernation as well as the regulatory mechanisms involved. The results revealed that compared with the summer active group (SA), iron content in the soleus muscle (SOL) decreased (− 65%) in the torpor group (TOR), but returned to normal levels in the inter-bout arousal (IBA); splenic iron content increased in the TOR group (vs. SA, + 67%), decreased in the IBA group (vs. TOR, − 37%). Expression of serum hepcidin decreased in the TOR group (vs. SA, − 22%) and returned to normal levels in the IBA groups; serum ferritin increased in the TOR group (vs. SA, + 31%), then recovered in the IBA groups. Soleus muscle transferrin receptor 1 (TfR1) expression increased in the TOR group (vs. SA, + 83%), decreased in the IBA group (vs. TOR, − 30%); ferroportin 1 increased in the IBA group (vs. SA, + 55%); ferritin increased in the IBA group (vs. SA, + 42%). No significant differences in extensor digitorum longus in iron content or iron metabolism-related protein expression were observed among the groups. Significantly, all increased or decreased indicators in this study returned to normal levels after the post-hibernation group, showing remarkable plasticity. In summary, avoiding iron overload may be a potential mechanism for hibernating Daurian ground squirrels to avoid disuse induced muscular atrophy. In addition, the different skeletal muscle types exhibited unique strategies for regulating iron homeostasis.

Bibliographic Details

Kong, Yong; Yin, Rongrong; He, Yue; Pan, Fangyang; Yang, Huajian; Wang, Huiping; Zhang, Jie; Gao, Yunfang

Springer Science and Business Media LLC

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know