Decomposition of protrusion features on thin-shell parts for mold flow analysis
Engineering with Computers, ISSN: 1435-5663, Vol: 39, Issue: 4, Page: 2757-2789
2023
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Volume decomposition is a technique for decomposing a computer-aided design (CAD) model into subvolumes to improve the types of meshes that can be generated and enhance the accuracy of finite element analysis. Protrusions frequently occur on thin-shell CAD models for functional and structural purposes. Automatic decomposition of such features is difficult due to the complexity and variation of shapes. In this study, a method was proposed for decomposing protrusions on thin-shell CAD models. A feature recognition algorithm was first employed to recognize four types of protrusions on a boundary representation (B-rep) model: tubes, columns, ribs, and symmetric extrusions. A specific volume decomposition algorithm was then developed for each type of protrusion. A protrusion is divided into sweepable subvolumes, with each subvolume represented by a pair of main contours and several side contours that connect to both main contours simultaneously. The contours of all subvolumes are tightly adjacent to each other to preserve the entire volume of the feature. Realistic CAD models and analysis results are presented to demonstrate the feasibility of the proposed protrusion decomposition method. The integration of the proposed algorithm with the decomposition of thin shells is also discussed.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know