Image classification by combining local and global features
Visual Computer, ISSN: 0178-2789, Vol: 35, Issue: 5, Page: 679-693
2019
- 69Citations
- 86Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Several techniques have recently been proposed to extract the features of an image. Feature extraction is one of the most important steps in various image processing and computer vision applications such as image retrieval, image classification, matching, object recognition. Relevant feature (global or local) contains discriminating information and is able to distinguish one object from others. Global features describe the entire image, whereas local features describe the image patches (small group of pixels). In this paper, we present a novel descriptor to extract the color-texture features via two information types. Our descriptor named concatenation of local and global color features is based on the fusion of global features using wavelet transform and a modified version of local ternary pattern, whereas, for the local features, speeded-up robust feature descriptor and bag of words model were used. All the features are extracted from the three color planes. To evaluate the effectiveness of our descriptor for image classification, we carried out experiments using the challenging datasets: New-BarkTex, Outex-TC13, Outex-TC14, MIT scene, UIUC sports event, Caltech 101 and MIT indoor scene. Experimental results showed that our descriptor outperforms the existing state-of-the-art methods.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85045061862&origin=inward; http://dx.doi.org/10.1007/s00371-018-1503-0; http://link.springer.com/10.1007/s00371-018-1503-0; http://link.springer.com/content/pdf/10.1007/s00371-018-1503-0.pdf; http://link.springer.com/article/10.1007/s00371-018-1503-0/fulltext.html; https://dx.doi.org/10.1007/s00371-018-1503-0; https://link.springer.com/article/10.1007/s00371-018-1503-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know