Phylogenetic and multivariate analyses to determine the effect of agricultural land-use intensification and soil physico-chemical properties on N-cycling microbial communities in drained Mediterranean peaty soils
Biology and Fertility of Soils, ISSN: 0178-2762, Vol: 52, Issue: 6, Page: 811-824
2016
- 23Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study aims to provide first insights on the impact of land-use intensification and soil properties in shaping the composition of N-cycling microbial communities in Mediterranean peaty soils drained for agricultural purposes. An intensively cultivated peaty soil represented by an intensive maize cropping system was compared with an extensive grassland and an agricultural soil left abandoned for 15 years. Clone-library sequencing based on partial amoA and nirK functional genes was used to characterize the composition of ammonia-oxidizer microorganisms and nirK-type bacterial denitrifiers, respectively. The relative roles of land-use intensification and soil physico-chemical properties in community composition shaping were quantified by multivariate analyses. Phylogenetic and multivariate analyses showed that (i) the majority of sequences of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) grouped within the Nitrosotalea and Nitrosospira clusters, respectively; (ii) uncultured denitrifying bacteria were unique to our soil; (iii) land-use intensification shaped the composition of N-cycling communities; (iv) ammonia-oxidizing communities were driven by clay (AOA), bulk density (AOB), and exchangeable calcium (both AOA and AOB); and (v) nirK-type denitrifier bacteria were shaped by silt, ammonium, and exchangeable potassium. Based on the variation partitioning, soil properties were the primary determinants of the AOA and nirK-type denitrifier community composition, while land-use intensification was the major factor shaping the community composition of AOB. These findings improve the knowledge on such vulnerable agrosystems aiming to optimize the management of soil microbes in order to enhance the sustainability of N fertilization.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84973160246&origin=inward; http://dx.doi.org/10.1007/s00374-016-1121-9; http://link.springer.com/10.1007/s00374-016-1121-9; http://link.springer.com/content/pdf/10.1007/s00374-016-1121-9; http://link.springer.com/content/pdf/10.1007/s00374-016-1121-9.pdf; http://link.springer.com/article/10.1007/s00374-016-1121-9/fulltext.html; https://dx.doi.org/10.1007/s00374-016-1121-9; https://link.springer.com/article/10.1007/s00374-016-1121-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know