How well does MPAS-atmosphere simulate the characteristics of the Botswana High?
Climate Dynamics, ISSN: 1432-0894, Vol: 57, Issue: 7-8, Page: 2109-2128
2021
- 9Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Botswana High is a prominent mid-tropospheric system that modulates rainfall over subtropical southern Africa, but the capability of a global climate model (GCM) to reproduce it remains unknown. This study examines the capability of a GCM with quasi-uniform resolution (Model Prediction Across Scales, hereafter MPAS) in simulating the characteristics of the Botswana High. The MPAS is applied to simulate the global climate at 240 km quasi-uniform resolution over the globe for the period 1980–2010. The model results are validated against gridded observation dataset (Climate Research Unit, CRU), satellite dataset (Global Precipitation Climatology Project, GPCP), and reanalysis datasets (Climate Forecast System Reanalysis, CFSR; the National Oceanic and Atmospheric Administration, NOAA; and the European Centre for Medium-Range Weather Forecasts version 5, ERA5). In general, MPAS replicates all the essential features in the climatology of temperature, rainfall, 500 hPa geopotential height and vertical motion over southern Africa, reproduces the spatial and temporal variation of the Botswana High, and captures the influence of the Botswana High on droughts and deep convections over the sub-continent. In addition, the model reproduces well the anomalies in vertical motion over subtropical southern Africa during +ve and −ve phases of the Botswana High. However, the model struggles to reproduce the precipitation pattern associated with the positive and negative modes of the Botswana High. The results of this study have an application in understanding the characteristics of the Botswana High and in improving MPAS for seasonal forecasting over southern Africa.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107385877&origin=inward; http://dx.doi.org/10.1007/s00382-021-05797-7; https://link.springer.com/10.1007/s00382-021-05797-7; https://link.springer.com/content/pdf/10.1007/s00382-021-05797-7.pdf; https://link.springer.com/article/10.1007/s00382-021-05797-7/fulltext.html; https://dx.doi.org/10.1007/s00382-021-05797-7; https://link.springer.com/article/10.1007/s00382-021-05797-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know