Nanocomposite interpenetrating hydrogels with high toughness and good self-recovery
Colloid and Polymer Science, ISSN: 1435-1536, Vol: 297, Issue: 6, Page: 821-830
2019
- 10Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It is particularly desirable to fabricate highly tough hydrogels with excellent self-recoverable properties for applications where high stress is required. In this work, we prepared a tough, fast self-recoverable nanocomposite hydrogel by chemical cross-linking of acrylamide (AM) monomers with vinyl-modified silica nanoparticles (VSNPs), combined with physical cross-linking of polyvinyl alcohol (PVA). The uniaxial tensile test showed that the nanocomposite hydrogel has excellent mechanical properties. The maximum elongation at break was as high as 666%, and the tensile strength was as high as 1.68 MPa. Cyclic loading-unloading tests revealed the excellent self-healing properties of the nanocomposite hydrogel. It is worth noting that the nanocomposite hydrogel exhibited higher strength after two loading-unloading cycles, due to the orientation of the PVA when stretched. In addition, the effects of PVA, VSNPs, and AM concentrations, and the number of PVA freeze-thaw cycles and freezing duration on the mechanical properties of the hydrogels were investigated in detail.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know