A green method of preparation of porous melamine formaldehyde resin without template in aqueous solution
Colloid and Polymer Science, ISSN: 1435-1536, Vol: 303, Issue: 1, Page: 111-118
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Porous melamine formaldehyde resin (PMF) was synthesized without using template in aqueous solution with a green preparation method. Conditions such as formaldehyde/melamine, concentration, curing temperature, and time on pore parameters of synthesized porous melamine formaldehyde resin were investigated. The chemical property and pore structure of porous melamine formaldehyde resin were characterized by infrared spectroscopy, SEM, and BET. The results showed that the samples synthesized in solvent water had a surface higher than 490 m/g, pore diameter of about 12.0 nm, and pore volume of about 1.2 cm/g. The surface area and pore structure of porous melamine formaldehyde resin could be adjusted by changing the prepolymer concentration. Due to the large pore diameter and volume, it also adsorbed a great amount of Congo Red (CR), indicating an excellent adsorbent for large molecules. This investigation reveals that the -NH and pore structure have great effects on the adsorption capacity of Congo Red dye of the as-synthesized melamine formaldehyde resin samples.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know