Characterization of physical aging by time-resolved rheometry: fundamentals and application to bituminous binders
Rheologica Acta, ISSN: 0035-4511, Vol: 57, Issue: 11, Page: 745-756
2018
- 22Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Physical aging is a ubiquitous phenomenon in glassy materials and it is reflected, for example, in the time evolution of rheological properties under isothermal conditions. In this paper, time-resolved rheometry (TRR) is used to characterize this time-dependent rheological behavior. The fundamentals of TRR are briefly reviewed, and its advantages over the traditional Struik’s physical aging test protocol are discussed. In the experimental section, the TRR technique is applied to study physical aging in bituminous binders. Small-diameter parallel plate (SDPP) rheometry is employed to perform cyclic frequency sweep (CFS) experiments over extended periods of time (from one to 8.6 days). The results verify that the mutation of rheological properties is relatively slow during physical aging (mutation number N′ << 1), thus allowing rheological measurements on a quasi-stable sample. The effects of temperature, crystallinity, and styrene-butadiene-styrene (SBS) polymer modification on the physical aging of bitumen are evaluated. The time-aging time superposition is found to be valid both for unmodified and for polymer-modified bitumen. Vertical shifts are necessary, in addition to horizontal time-aging time shifts, to generate smooth master curves for highly SBS-modified bitumen.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know