Antibody signatures in patients with histopathologically defined multiple sclerosis patterns
Acta Neuropathologica, ISSN: 1432-0533, Vol: 139, Issue: 3, Page: 547-564
2020
- 11Citations
- 64Captures
- 3Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- CrossRef11
- 11
- Captures64
- Readers64
- 64
- Mentions3
- References2
- Wikipedia2
- Blog Mentions1
- Blog1
Most Recent Blog
MS one disease or should we suggest one syndrome or are we going to split it into smaller diseases based on different targets.
Antibody signatures in patients with histopathologically defined multiple sclerosis patterns. Stork L, Ellenberger D, Ruprecht K, Reindl M, Beißbarth T, Friede T, Kümpfel T, Gerdes LA, Gloth M, Liman T, Paul F, Brück W, Metz I. Acta Neuropathol. 2020 Jan 16. doi: 10.1007/s00401-019-02120-x. [Epub ahead of print] Early active multiple sclerosis (MS) lesions can be classified histologically into thr
Article Description
Early active multiple sclerosis (MS) lesions can be classified histologically into three main immunopathological patterns of demyelination (patterns I–III), which suggest pathogenic heterogeneity and may predict therapy response. Patterns I and II show signs of immune-mediated demyelination, but only pattern II is associated with antibody/complement deposition. In pattern III lesions, which include Baló’s concentric sclerosis, primary oligodendrocyte damage was proposed. Serum antibody reactivities could reflect disease pathogenesis and thus distinguish histopathologically defined MS patterns. We established a customized microarray with more than 700 peptides that represent human and viral antigens potentially relevant for inflammatory demyelinating CNS diseases, and tested sera from 66 patients (pattern I n = 12; II n = 29; III n = 25, including 8 with Baló’s), healthy controls, patients with Sjögren’s syndrome and stroke patients. Cell-based assays were performed for aquaporin 1 (AQP1) and AQP4 antibody detection. No single peptide showed differential binding among study cohorts. Because antibodies can react with different peptides from one protein, we also analyzed groups of peptides. Patients with pattern II showed significantly higher reactivities to Nogo-A peptides as compared to patterns I (p = 0.02) and III (p = 0.02). Pattern III patients showed higher reactivities to AQP1 (compared to pattern I p = 0.002, pattern II p = 0.001) and varicella zoster virus (VZV, compared to pattern II p = 0.05). In patients with Baló’s, AQP1 reactivity was also significantly higher compared to patients without Baló’s (p = 0.04), and the former revealed distinct antibody signatures. Histologically, Baló’s patients showed loss of AQP1 and AQP4 in demyelinating lesions, but no antibodies binding conformational AQP1 or AQP4 were detected. In summary, higher reactivities to Nogo-A peptides in pattern II patients could be relevant for enhanced axonal repair and remyelination. Higher reactivities to AQP1 peptides in pattern III patients and its subgroup of Baló’s patients possibly reflect astrocytic damage. Finally, latent VZV infection may cause peripheral immune activation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85078021449&origin=inward; http://dx.doi.org/10.1007/s00401-019-02120-x; http://www.ncbi.nlm.nih.gov/pubmed/31950335; http://link.springer.com/10.1007/s00401-019-02120-x; https://dx.doi.org/10.1007/s00401-019-02120-x; https://link.springer.com/article/10.1007/s00401-019-02120-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know