The stem cell factor-stimulated melanogenesis in human melanocytes can be abrogated by interrupting the phosphorylation of MSK1: evidence for involvement of the p38/MSK1/CREB/MITF axis
Archives of Dermatological Research, ISSN: 1432-069X, Vol: 310, Issue: 3, Page: 187-196
2018
- 21Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef19
- Captures18
- Readers18
- 18
Article Description
We recently found that treatment of normal human melanocytes (NHMs) with the antioxidant astaxanthin (AX) suppresses the stem cell factor (SCF)-stimulated protein expression levels of microphthalmia-associated transcription factor (MITF) at 1.5 h and of tyrosinase and endothelin B receptor at 96 h post-treatment. Analysis of the signaling cascade(s) involved revealed that although the major SCF-activated signaling cascade that leads to CREB activation (the c-KIT/Shc/Raf-1/ERK/RSK/CREB axis) is not interrupted, the increased phosphorylation of CREB is significantly abrogated by AX. We show for the first time that treatment of NHMs with SCF activates the p38/mitogen and stress-activated kinase (MSK1) axis in a c-KIT dependent fashion. Interestingly, whereas AX does not abrogate the SCF-induced activation of p38, it does affect the increased phosphorylation of its downstream target, MSK1. The lineage connection of p38/MSK1 activation with CREB activation and its associated MITF expression is supported by our finding that while silencing MSK1 abolishes the activation of CREB and the subsequent increase in total MITF proteins at 15 min and at 1.5 h, respectively, post-stimulation with SCF, inhibitors of p38 and of MSK1 abrogate the SCF-induced increase in total MITF proteins at 1.5 h post-stimulation. These findings suggest that SCF-stimulated melanogenesis can be abrogated by interrupting MSK1 phosphorylation, providing evidence for involvement of the p38/MSK1/CREB/MITF axis, providing new evidence for the ROS depletion independent interruption by antioxidants of SCF-triggered signaling.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85040860299&origin=inward; http://dx.doi.org/10.1007/s00403-018-1816-x; http://www.ncbi.nlm.nih.gov/pubmed/29362867; http://link.springer.com/10.1007/s00403-018-1816-x; https://dx.doi.org/10.1007/s00403-018-1816-x; https://link.springer.com/article/10.1007/s00403-018-1816-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know