Fluid–rock reactions in the 1.3 Ga siderite carbonatite of the Grønnedal–Íka alkaline complex, Southwest Greenland
Contributions to Mineralogy and Petrology, ISSN: 0010-7999, Vol: 173, Issue: 10
2018
- 14Citations
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Petrogenetic studies of carbonatites are challenging, because carbonatite mineral assemblages and mineral chemistry typically reflect both variable pressure–temperature conditions during crystallization and fluid–rock interaction caused by magmatic–hydrothermal fluids. However, this complexity results in recognizable alteration textures and trace-element signatures in the mineral archive that can be used to reconstruct the magmatic evolution and fluid–rock interaction history of carbonatites. We present new LA–ICP–MS trace-element data for magnetite, calcite, siderite, and ankerite–dolomite–kutnohorite from the iron-rich carbonatites of the 1.3 Ga Grønnedal–Íka alkaline complex, Southwest Greenland. We use these data, in combination with detailed cathodoluminescence imaging, to identify magmatic and secondary geochemical fingerprints preserved in these minerals. The chemical and textural gradients show that a 55 m-thick basaltic dike that crosscuts the carbonatite intrusion has acted as the pathway for hydrothermal fluids enriched in F and CO, which have caused mobilization of the LREEs, Nb, Ta, Ba, Sr, Mn, and P. These fluids reacted with and altered the composition of the surrounding carbonatites up to a distance of 40 m from the dike contact and caused formation of magnetite through oxidation of siderite. Our results can be used for discrimination between primary magmatic minerals and later alteration-related assemblages in carbonatites in general, which can lead to a better understanding of how these rare rocks are formed. Our data provide evidence that siderite-bearing ferrocarbonatites can form during late stages of calciocarbonatitic magma evolution.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know