Garnet EoS: a critical review and synthesis
Contributions to Mineralogy and Petrology, ISSN: 1432-0967, Vol: 177, Issue: 5
2022
- 33Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
All available volume and elasticity data for the garnet end-members grossular, pyrope, almandine and spessartine have been re-evaluated for both internal consistency and for consistency with experimentally measured heat capacities. The consistent data were then used to determine the parameters of third-order Birch–Murnaghan EoS to describe the isothermal compression at 298 K and a Mie–Grüneisen–Debye thermal-pressure EoS to describe the PVT behaviour. In a full Mie–Grüneisen–Debye EoS, the variation of the thermal Grüneisen parameter with volume is defined as γ=γ0(VV0)q. For grossular and pyrope garnets, there is sufficient data to refine q which has a value of q = 0.8(2) for both garnets. For other garnets, the data do not constrain the value of q and we therefore refined a q-compromise version of the Mie–Grüneisen–Debye EoS in which both γ/V and the Debye temperature θ are held constant at all P and T, leading to (∂CV∂P)T=0, parallel isochors and constant isothermal bulk modulus along an isochor. Final refined parameters for the q-compromise Mie–Grüneisen–Debye EoS are: V (cm/mol)K (GPa)K0T′θ γfor pyrope and grossular, the two versions of the Mie–Grüneisen–Debye EoS predict indistinguishable properties over the metamorphic pressure and temperature range, and the same properties as the EoS based on experimental heat capacities. The biggest change from previously published EoS is for almandine for which the new EoS predicts geologically reasonable entrapment conditions for zircon inclusions in almandine-rich garnets.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know