Newly detected shock-induced high-pressure phases formed in amphibolite clasts of the suevite breccia (Ries impact crater, Germany): Liebermannite, kokchetavite, and other ultrahigh-pressure phases
Contributions to Mineralogy and Petrology, ISSN: 1432-0967, Vol: 177, Issue: 8
2022
- 8Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Amphibolite clasts in the suevite of the Ries impact crater contain shock-induced melt veins (SMVs) with high-pressure phases such as majoritic garnet, jadeitic clinopyroxene and others. In addition, heat conduction from hot SMVs into adjacent rock portions locally produced further high P–T melt pools. These melts were preferentially generated in rock domains, where the SMVs cross older (‘pre-Ries’) veinlets with analcime or prehnite and larger grains of sericitized plagioclase. Melting of such chemically different local bulk systems (Na-, Ca-, Ca-Na- and K-Na-rich) was facilitated by low solidus temperatures of the original secondary OH-bearing phases. From the resulting shock-induced melts, liebermannite, kokchetavite, jadeite, nonstoichiometric and albitic jadeite, grossular, vuagnatite, lawsonite + coesite, and clinozoisite crystallized during pressure release. Vuagnatite is now proven to be a genuine high-pressure phase. Its ubiquitous distance of 20–35 μm from the hot shock veins suggests a temperature sensitivity typical for an OH-bearing phase. In local Na-rich melts albitic jadeite appears instead of the assemblage jadeite + SiO. Liebermannite, a dense polymorph of K-feldspar was identified by Raman spectroscopy. After stishovite, liebermannite constitutes the second known high-pressure phase in the Ries that contains silicon exclusively in six-fold coordination. The KAlSiO-polymorph kokchetavite was formed in alkali-rich melt glasses. Pressure and temperature values in the range of about 8–11 GPa and ~ 800–1100 °C were estimated from the chemical compositions of locally occurring majoritic garnets (Si = 3.21–3.32 and 3.06–3.10 apfu), respectively, and the presence of fine-grained aggregates of lawsonite and coesite. Generally, the neighboring areas of the veins are characterized by a sequence of variable high-pressure phases documenting strongly falling P–T conditions with increasing distance from the vein. These novel features enlighten the dynamic event during passage of a shock wave.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know