A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions
International Journal of Legal Medicine, ISSN: 1437-1596, Vol: 130, Issue: 6, Page: 1431-1438
2016
- 51Citations
- 101Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations51
- Citation Indexes51
- 51
- CrossRef12
- Captures101
- Readers101
- 101
Article Description
Blood, saliva, and semen are some of the forensically most relevant biological stains commonly found at crime scenes, which can often be of small size or challenging due to advanced decay. In this context, it is of great importance to possess reliable knowledge about the effects of degradation under different environmental conditions and to use appropriate methods for retrieving maximal information from limited sample amount. In the last decade, RNA analysis has been demonstrated to be a reliable approach identifying the cell or tissue type of an evidentiary body fluid trace. Hence, messenger RNA (mRNA) profiling is going to be implemented into forensic casework to supplement the routinely performed short tandem repeat (STR) analysis, and therefore, the ability to co-isolate RNA and DNA from the same sample is a prerequisite. The objective of this work was to monitor and compare the degradation process of both nucleic acids for human blood, saliva, and semen stains at three different concentrations, exposed to dry and humid conditions during a 17-month time period. This study also addressed the question whether there are relevant differences in the efficiency of automated, magnetic bead-based single DNA or RNA extraction methods compared to a manually performed co-extraction method using silica columns. Our data show that mRNA, especially from blood and semen, can be recovered over the entire time period surveyed without compromising the success of DNA profiling; mRNA analysis indicates to be a robust and reliable technique to identify the biological source of aged stain material. The co-extraction method appears to provide mRNA and DNA of sufficient quantity and quality for all different forensic investigation procedures. Humidity and accompanied mold formation are detrimental to both nucleic acids.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84968661795&origin=inward; http://dx.doi.org/10.1007/s00414-016-1373-9; http://www.ncbi.nlm.nih.gov/pubmed/27184660; http://link.springer.com/10.1007/s00414-016-1373-9; https://dx.doi.org/10.1007/s00414-016-1373-9; https://link.springer.com/article/10.1007/s00414-016-1373-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know