PlumX Metrics
Embed PlumX Metrics

Roles of gap junctions in glucose transport from glucose transporter 1-positive to -negative cells in the lateral wall of the rat cochlea

Histochemistry and Cell Biology, ISSN: 1432-119X, Vol: 131, Issue: 1, Page: 89-102
2009
  • 14
    Citations
  • 0
    Usage
  • 33
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Despite the importance of glucose metabolism for auditory function, the mechanisms of glucose transport in the cochlea are not completely understood. We hypothesized that gap junctions mediate intercellular glucose transport in the cochlea in cooperation with facilitative glucose transporter 1 (GLUT1). Immunohistochemistry showed that GLUT1 and the tight junction protein occludin were expressed in blood vessels, and GLUT1, the gap junction proteins connexin26 and connexin30, and occludin were also present in strial basal cells in the lateral wall of the rat cochlea. Gap junctions were found among not only these GLUT1-positive strial basal cells but also GLUT1-negative fibrocytes in the spiral ligaments and strial intermediate cells. Glucose imaging using 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG, MW 342) together with Evans Blue Albumin (EBA, MW 68,000) showed that 6-NBDG was rapidly distributed throughout the stria vascularis and spiral ligament, whereas EBA was localized only in the vessels. The gap junctional uncouplers heptanol and carbenoxolone inhibited the distribution of 6-NBDG in the spiral ligament without decreasing the fluorescence of EBA in the blood vessels. These findings suggest that gap junctions mediate glucose transport from GLUT1-positive cells (strial basal cells) to GLUT1-negative cells (fibrocytes in the spiral ligament and strial intermediate cells) in the cochlea. © Springer-Verlag 2008.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know