Bone remodeling: an improved spatiotemporal mathematical model
Archive of Applied Mechanics, ISSN: 1432-0681, Vol: 90, Issue: 3, Page: 635-649
2020
- 7Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Bone remodeling is a key process in vertebrate organisms, since it is responsible for maintaining skeleton’s integrity. However, in some pathological conditions, such as osteoporosis or Paget’s disease, bone’s function becomes compromised. To gain a better understanding about these conditions, bone remodeling has become a determinant subject of research. Remodeling implies resorption of bone by osteoclasts followed by formation of new tissue by osteoblasts. The interaction between these two bone cells is reproduced in this work by extending the bone remodeling model of Ayati et al. (Biol Direct 5:28, 2010. https://doi.org/10.1186/1745-6150-5-28). Also, for the first time, a discrete numerical method—finite element method (FEM)—is applied to solve the remodeling equations and analyze the results. A single cycle of remodeling is simulated using a two-dimensional bone patch. Results show that the developed mathematical model is able to correlate bone cell dynamics with different phases of the remodeling process, allowing to obtain the transient spatial distribution of bone’s apparent density along time. Thus, the presented model reveals itself as a successful approach, producing an accurate temporal-spatial evolution of bone cells during an event of bone remodeling.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85075203545&origin=inward; http://dx.doi.org/10.1007/s00419-019-01631-z; http://link.springer.com/10.1007/s00419-019-01631-z; http://link.springer.com/content/pdf/10.1007/s00419-019-01631-z.pdf; http://link.springer.com/article/10.1007/s00419-019-01631-z/fulltext.html; https://dx.doi.org/10.1007/s00419-019-01631-z; https://link.springer.com/article/10.1007/s00419-019-01631-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know