Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags
Archive of Applied Mechanics, ISSN: 1432-0681, Vol: 91, Issue: 5, Page: 2127-2142
2021
- 36Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The aim of this article is to investigate the thermal and mechanical vibration properties of functionally graded microbeams. The governing system of equations is formulated on the basis of classical Euler–Bernoulli beam model incorporating the generalized dual-phase lag model of thermoelasticity rather than the conventional steady-state Fourier heat conduction. In our analysis, it is also assumed that the mechanical and thermal properties such as modulus of elasticity, density and coefficient of thermal conductivity change through the thickness by an exponential law distribution, with the exception of Poisson’s ratio. The effects of system parameters on different field quantities have been depicted for initial stress, material gradient index and pulses duration. The numerical results are compared with benchmark findings, for the sake of verification. Presented results demonstrate the considerable effects of temperature and the material gradients on the dynamic behavior of microscopic structures. Finally, a comparison is conducted with the results discussed in the literature to justify the quality of the present technique.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know