Space physiology II: Adaptation of the central nervous system to space flight-past, current, and future studies
European Journal of Applied Physiology, ISSN: 1439-6319, Vol: 113, Issue: 7, Page: 1655-1672
2013
- 56Citations
- 130Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations56
- Citation Indexes56
- 56
- CrossRef39
- Captures130
- Readers130
- 130
Review Description
Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration. © 2012 Springer-Verlag Berlin Heidelberg.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84879220512&origin=inward; http://dx.doi.org/10.1007/s00421-012-2509-3; http://www.ncbi.nlm.nih.gov/pubmed/23053128; http://link.springer.com/10.1007/s00421-012-2509-3; https://dx.doi.org/10.1007/s00421-012-2509-3; https://link.springer.com/article/10.1007/s00421-012-2509-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know