Effects of acute and sub-acute hypobaric hypoxia on oxidative stress: a field study in the Alps
European Journal of Applied Physiology, ISSN: 1439-6327, Vol: 121, Issue: 1, Page: 297-306
2021
- 27Citations
- 24Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations27
- Citation Indexes27
- 27
- CrossRef1
- Captures24
- Readers24
- 24
Article Description
Purpose: High altitude results in lower barometric pressure and hence partial pressure of O decrease can lead to several molecular and cellular changes, such as generation of reactive oxygen species (ROS). Electron Paramagnetic Resonance technique was adopted in the field, to evaluate the effects of acute and sub-acute hypobaric hypoxia (HH) on ROS production by micro-invasive method. Biological biomarkers, indicators of oxidative stress, renal function and inflammation were investigated too. Methods: Fourteen lowlander subjects (mean age 27.3 ± 5.9 years) were exposed to HH at 3269 m s.l. ROS production, related oxidative damage to cellular components, systemic inflammatory response and renal function were determined through blood and urine profile performed at 1st, 2nd, 4th, 7th, and 14th days during sojourn. Results: Kinetics of changes during HH exposition showed out significant (range p < 0.05–0.0001) increases that at max corresponds to 38% for ROS production rate, 140% for protein carbonyl, 44% for lipid peroxidation, 42% for DNA damage, 200% for inflammatory cytokines and modifications in renal function (assessed by neopterin concentration: 48%). Conversely, antioxidant capacity significantly (p < 0.0001) decreased − 17% at max. Conclusion: This 14 days in-field study describes changes of oxidative-stress biomarkers during HH exposure in lowlanders. The results show an overproduction of ROS and consequent oxidative damage to protein, lipids and DNA with a decrease in antioxidant capacity and the involvement of inflammatory status and a transient renal dysfunction. Exposure at high altitude induces a hypoxic condition during acute and sub-acute phases accompanied by molecular adaptation mechanism indicating acclimatization.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85092566809&origin=inward; http://dx.doi.org/10.1007/s00421-020-04527-x; http://www.ncbi.nlm.nih.gov/pubmed/33057877; https://link.springer.com/10.1007/s00421-020-04527-x; https://dx.doi.org/10.1007/s00421-020-04527-x; https://link.springer.com/article/10.1007/s00421-020-04527-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know