PlumX Metrics
Embed PlumX Metrics

Neural network simulations of the primate oculomotor system. V. Eye-head gaze shifts

Biological Cybernetics, ISSN: 0340-1200, Vol: 102, Issue: 3, Page: 209-225
2010
  • 16
    Citations
  • 0
    Usage
  • 42
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We examined the performance of a dynamic neural network that replicates much of the psychophysics and neurophysiology of eye-head gaze shifts without relying on gaze feedback control. For example, our model generates gaze shifts with ocular components that do not exceed 35° in amplitude, whatever the size of the gaze shifts (up to 75° in our simulations), without relying on a saturating nonlinearity to accomplish this. It reproduces the natural patterns of eye-head coordination in that head contributions increase and ocular contributions decrease together with the size of gaze shifts and this without compromising the accuracy of gaze realignment. It also accounts for the dependence of the relative contributions of the eyes and the head on the initial positions of the eyes, as well as for the position sensitivity of saccades evoked by electrical stimulation of the superior colliculus. Finally, it shows why units of the saccadic system could appear to carry gaze-related signals even if they do not operate within a gaze control loop and do not receive head-related information. © 2010 Springer-Verlag.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know