Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat (Avena strigosa Schreb.)
Planta, ISSN: 0032-0935, Vol: 230, Issue: 2, Page: 267-276
2009
- 60Citations
- 38Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations60
- Citation Indexes60
- 60
- CrossRef40
- Captures38
- Readers38
- 38
- Mentions1
- News Mentions1
- News1
Most Recent News
Changes caused by heavy metals in micronutrient content and antioxidant system of forage grasses used for phytoremediation: an overview/Alteracoes causadas por metais pesados na concentracao de micronutrientes e no sistema antioxidante de gramineas forrag
INTRODUCTION The content of heavy metals (1) in the environment has increased considerably in recent years due to the improper discard of industrial waste, to
Article Description
The contributions of cadmium (Cd) accumulation in cell walls, antioxidative enzymes and induction of phytochelatins (PCs) to Cd tolerance were investigated in two distinctive genotypes of black oat (Avena strigosa Schreb.). One cultivar of black oat 'New oat' accumulated Cd in the leaves at the highest concentration compared to another black oat cultivar 'Soil saver' and other major graminaceous crops. The shoot:root Cd ratio also demonstrated that 'New oat' was the high Cd-accumulating cultivar, whereas 'Soil saver' was the low Cd-accumulating cultivar. Varied levels of Cd exposure demonstrated the strong Cd tolerance of 'New oat'. By contrast, low Cd-accumulating cultivar 'Soil saver' suffered Cd toxicity such as growth defects and increased lipid peroxidation, even though it accumulated less Cd in shoots than 'New oat'. Higher activities of ascorbate peroxidase (EC 1.11.1.11) and superoxide dismutase (EC 1. 15. 1. 1) were observed in the leaves of 'New oat' than in 'Soil saver'. No advantage of 'New oat' in PCs induction was observed in comparison to Cd-sensitive cultivar 'Soil saver', although Cd exposure increased the concentration of total PCs in both cultivars. Higher and increased Cd accumulation in cell wall fraction was observed in shoots of 'New oat'. On the other hand, in 'Soil saver', apoplasmic Cd accumulation showed saturation under higher Cd exposure. Overall, the present results suggest that cell wall Cd accumulation and antioxidative activities function in the tolerance against Cd stress possibly in combination with vacuolar Cd compartmentation. © 2009 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=67649458189&origin=inward; http://dx.doi.org/10.1007/s00425-009-0939-x; http://www.ncbi.nlm.nih.gov/pubmed/19437035; http://link.springer.com/10.1007/s00425-009-0939-x; http://www.springerlink.com/index/10.1007/s00425-009-0939-x; http://www.springerlink.com/index/pdf/10.1007/s00425-009-0939-x; https://dx.doi.org/10.1007/s00425-009-0939-x; https://link.springer.com/article/10.1007/s00425-009-0939-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know