Merlin modulates process outgrowth and synaptogenesis in the cerebellum
Brain Structure and Function, ISSN: 1863-2661, Vol: 224, Issue: 6, Page: 2121-2142
2019
- 9Citations
- 17Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- Captures17
- Readers17
- 17
- Mentions1
- Blog Mentions1
- Blog1
Most Recent Blog
Brain Structure and Function
The effect of exercise on memory and BDNF signaling is dependent on intensity AbstractThe aims of the present study were to investigate in brain of
Article Description
Neurofibromatosis type 2 (NF2) patients are prone to develop glial-derived tumors in the peripheral and central nervous system (CNS). The Nf2 gene product –Merlin is not only expressed in glia, but also in neurons of the CNS, where its function still remains elusive. Here, we show that cerebellar Purkinje cells (PCs) of isoform-specific Merlin-deficient mice were innervated by smaller vGluT2-positive clusters at presynaptic terminals than those of wild-type mice. This was paralleled by a reduction in frequency and amplitude of miniature excitatory postsynaptic currents (mEPSC). On the contrary, in conditional transgenic mice in which Merlin expression was specifically ablated in PCs (L7Cre;Nf2), we found enlarged vGluT2-positive clusters in their presynaptic buttons together with increased amplitudes of miniature postsynaptic currents. The presynaptic terminals of these PCs innervating neurons of the deep cerebellar nuclei were also enlarged. When exploring mice with Merlin-deficient granule cells (GCs) (Math1Cre;Nf2), we found cerebellar extracts to contain higher amounts of vGluT1 present in parallel fiber terminals. In parallel, mEPSC frequency was increased in Math1Cre;Nf2 mice. On the contrary, VGluT2 clusters in cerebellar glomeruli composed of NF2-deficient presynaptic Mossy fiber terminals and NF2-deficient postsynaptic GC were reduced in size as shown for isoform-specific knockout mice. These changes in Math1Cre;Nf2-deficient mice were paralleled by an increased activation of Rac1–Cofilin signaling which is known to impact on cytoskeletal reorganization and synapse formation. Consistent with the observed synaptic alterations in these transgenic mice, we observed altered ultrasonic vocalization, which is known to rely on proper cerebellar function. No gross morphological changes or motor coordination deficits were observed in any of these transgenic mice. We therefore conclude that Merlin does not regulate overall cerebellar development, but impacts on pre- and post-synaptic terminal organization.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85067061995&origin=inward; http://dx.doi.org/10.1007/s00429-019-01897-7; http://www.ncbi.nlm.nih.gov/pubmed/31165301; http://link.springer.com/10.1007/s00429-019-01897-7; https://dx.doi.org/10.1007/s00429-019-01897-7; https://link.springer.com/article/10.1007/s00429-019-01897-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know