Automated bone marrow cell classification through dual attention gates dense neural networks
Journal of Cancer Research and Clinical Oncology, ISSN: 1432-1335, Vol: 149, Issue: 19, Page: 16971-16981
2023
- 5Citations
- 5Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Studies from Chongqing Medical University Add New Findings in the Area of Bone Marrow Cells (Automated Bone Marrow Cell Classification Through Dual Attention Gates Dense Neural Networks)
2023 NOV 08 (NewsRx) -- By a News Reporter-Staff News Editor at Blood Daily News -- Researchers detail new data in Cell Research - Bone
Article Description
Purpose: The morphology of bone marrow cells is essential in identifying malignant hematological disorders. The automatic classification model of bone marrow cell morphology based on convolutional neural networks shows considerable promise in terms of diagnostic efficiency and accuracy. However, due to the lack of acceptable accuracy in bone marrow cell classification algorithms, automatic classification of bone marrow cells is now infrequently used in clinical facilities. To address the issue of precision, in this paper, we propose a Dual Attention Gates DenseNet (DAGDNet) to construct a novel efficient, and high-precision bone marrow cell classification model for enhancing the classification model’s performance even further. Methods: DAGDNet is constructed by embedding a novel dual attention gates (DAGs) mechanism in the architecture of DenseNet. DAGs are used to filter and highlight the position-related features in DenseNet to improve the precision and recall of neural network-based cell classifiers. We have constructed a dataset of bone marrow cell morphology from the First Affiliated Hospital of Chongqing Medical University, which mainly consists of leukemia samples, to train and test our proposed DAGDNet together with the bone marrow cell classification dataset. Results: When evaluated on a multi-center dataset, experimental results show that our proposed DAGDNet outperforms image classification models such as DenseNet and ResNeXt in bone marrow cell classification performance. The mean precision of DAGDNet on the Munich Leukemia Laboratory dataset is 88.1%, achieving state-of-the-art performance while still maintaining high efficiency. Conclusion: Our data demonstrate that the DAGDNet can improve the efficacy of automatic bone marrow cell classification and can be exploited as an assisting diagnosis tool in clinical applications. Moreover, the DAGDNet is also an efficient model that can swiftly inspect a large number of bone marrow cells and offers the benefit of reducing the probability of an incorrect diagnosis.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171873905&origin=inward; http://dx.doi.org/10.1007/s00432-023-05384-9; http://www.ncbi.nlm.nih.gov/pubmed/37740765; https://link.springer.com/10.1007/s00432-023-05384-9; https://dx.doi.org/10.1007/s00432-023-05384-9; https://link.springer.com/article/10.1007/s00432-023-05384-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know